洛谷 6516 「QkOI#R1」Quark and Graph

近日膜你赛做到了和这个核心思路类似的题……
于是就回来写了(?

考虑把图按最短路分层,则能连的边只有相邻两层的和同一层内的。

对于前一种边,对于第 \(i\) 层的任意一个点,往 \(i-1\) 层连边的生成函数为 \((1+x)^{t_i}-1\)
\(i\) 层所有点往上一层连边的生成函数即 \([(1+x)^{t_i}-1]^{ t_{i-1} }\)

分治 NTT / 手动 ln exp 胡乱分析一下可以做到 \(O(n \log^2 n)\) / \(O(n \log n)\)(视 \(n,m,\sum t_i t_{i-1}\) 同阶)。

考虑后一种边,则设可能的这样的边的总数为 \(s\),有 \[ s = \sum\limits_{i=1}^{n-1} \binom{t_i}2 \]

则这部分边的生成函数是 \[ \sum\limits_{i\ge 0} \binom si x^i = (1+x)^s \]

直接多项式快速幂即可。

不过这样会慢一点,也可以像官方题解那样观察到在 \(s \bmod p < i < p\) 时有 \(\binom si \equiv 0 \pmod p\),所以直接按照套路维护 \(s^{\underline i}\) 即可。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#include <cstdio>
#include <vector>
#include <cstring>
#include <utility>
#include <algorithm>
#define add(a,b) (a + b >= mod ? a + b - mod : a + b)
#define dec(a,b) (a < b ? a - b + mod : a - b)
using namespace std;
const int N = 2e5;
const int mod = 998244353;
int n,m;
int c[N + 5],s;
inline int fpow(int a,int b)
{
int ret = 1;
for(;b;b >>= 1)
(b & 1) && (ret = (long long)ret * a % mod),a = (long long)a * a % mod;
return ret;
}
namespace Poly
{
const int N = 1 << 19;
const int G = 3;
int lg2[N + 5];
int rev[N + 5],fac[N + 5],ifac[N + 5],inv[N + 5];
int rt[N + 5],irt[N + 5];
inline void init()
{
for(register int i = 2;i <= N;++i)
lg2[i] = lg2[i >> 1] + 1;
int w = fpow(G,(mod - 1) / N);
rt[N >> 1] = 1;
for(register int i = (N >> 1) + 1;i <= N;++i)
rt[i] = (long long)rt[i - 1] * w % mod;
for(register int i = (N >> 1) - 1;i;--i)
rt[i] = rt[i << 1];
fac[0] = 1;
for(register int i = 1;i <= N;++i)
fac[i] = (long long)fac[i - 1] * i % mod;
ifac[N] = fpow(fac[N],mod - 2);
for(register int i = N;i;--i)
ifac[i - 1] = (long long)ifac[i] * i % mod;
for(register int i = 1;i <= N;++i)
inv[i] = (long long)ifac[i] * fac[i - 1] % mod;
}
struct poly
{
vector<int> a;
inline poly(int x = 0)
{
x && (a.push_back(x),1);
}
inline poly(const vector<int> &o)
{
a = o,shrink();
}
inline poly(const poly &o)
{
a = o.a,shrink();
}
inline void shrink()
{
for(;!a.empty() && !a.back();a.pop_back());
}
inline int size() const
{
return a.size();
}
inline void resize(int x)
{
a.resize(x);
}
inline int operator[](int x) const
{
if(x < 0 || x >= size())
return 0;
return a[x];
}
inline void clear()
{
vector<int>().swap(a);
}
inline poly rever() const
{
return poly(vector<int>(a.rbegin(),a.rend()));
}
inline void ntt(int type = 1)
{
int n = size();
type == -1 && (reverse(a.begin() + 1,a.end()),1);
int lg = lg2[n] - 1;
for(register int i = 0;i < n;++i)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg),
i < rev[i] && (swap(a[i],a[rev[i]]),1);
for(register int w = 2,m = 1;w <= n;w <<= 1,m <<= 1)
for(register int i = 0;i < n;i += w)
for(register int j = 0;j < m;++j)
{
int t = (long long)rt[m | j] * a[i | j | m] % mod;
a[i | j | m] = dec(a[i | j],t),a[i | j] = add(a[i | j],t);
}
if(type == -1)
for(register int i = 0;i < n;++i)
a[i] = (long long)a[i] * inv[n] % mod;
}
friend inline poly operator+(const poly &a,const poly &b)
{
vector<int> ret(max(a.size(),b.size()));
for(register int i = 0;i < ret.size();++i)
ret[i] = add(a[i],b[i]);
return poly(ret);
}
friend inline poly operator-(const poly &a,const poly &b)
{
vector<int> ret(max(a.size(),b.size()));
for(register int i = 0;i < ret.size();++i)
ret[i] = dec(a[i],b[i]);
return poly(ret);
}
friend inline poly operator*(poly a,poly b)
{
if(a.a.empty() || b.a.empty())
return poly();
int lim = 1,tot = a.size() + b.size() - 1;
for(;lim < tot;lim <<= 1);
a.resize(lim),b.resize(lim);
a.ntt(),b.ntt();
for(register int i = 0;i < lim;++i)
a.a[i] = (long long)a[i] * b[i] % mod;
a.ntt(-1),a.shrink();
return a;
}
poly &operator+=(const poly &o)
{
resize(max(size(),o.size()));
for(register int i = 0;i < o.size();++i)
a[i] = add(a[i],o[i]);
return *this;
}
poly &operator-=(const poly &o)
{
resize(max(size(),o.size()));
for(register int i = 0;i < o.size();++i)
a[i] = dec(a[i],o[i]);
return *this;
}
poly &operator*=(poly o)
{
return (*this) = (*this) * o;
}
poly deriv() const
{
if(a.empty())
return poly();
vector<int> ret(size() - 1);
for(register int i = 0;i < size() - 1;++i)
ret[i] = (long long)(i + 1) * a[i + 1] % mod;
return poly(ret);
}
poly integ() const
{
if(a.empty())
return poly();
vector<int> ret(size() + 1);
for(register int i = 0;i < size();++i)
ret[i + 1] = (long long)a[i] * inv[i + 1] % mod;
return poly(ret);
}
inline poly modxn(int n) const
{
if(a.empty())
return poly();
n = min(n,size());
return poly(vector<int>(a.begin(),a.begin() + n));
}
inline poly inver(int m) const
{
poly ret(fpow(a[0],mod - 2));
for(register int k = 1;k < m;)
k <<= 1,ret = (ret * (2 - modxn(k) * ret)).modxn(k);
return ret.modxn(m);
}
inline pair<poly,poly> div(poly o) const
{
if(size() < o.size())
return make_pair(poly(),*this);
poly f,g;
f = (rever().modxn(size() - o.size() + 1) * o.rever().inver(size() - o.size() + 1)).modxn(size() - o.size() + 1).rever();
g = (modxn(o.size() - 1) - o.modxn(o.size() - 1) * f.modxn(o.size() - 1)).modxn(o.size() - 1);
return make_pair(f,g);
}
inline poly log(int m) const
{
return (deriv() * inver(m)).integ().modxn(m);
}
inline poly exp(int m) const
{
poly ret(1);
for(register int k = 1;k < m;)
k <<= 1,ret = (ret * (1 - ret.log(k) + modxn(k))).modxn(k);
return ret.modxn(m);
}
inline poly pow(int m,int k1,int k2 = -1) const
{
if(a.empty())
return poly();
if(k2 == -1)
k2 = k1;
int t = 0;
for(;t < size() && !a[t];++t);
if((long long)t * k1 >= m)
return poly();
poly ret;
ret.resize(m);
int u = fpow(a[t],mod - 2),v = fpow(a[t],k2);
for(register int i = 0;i < m - t * k1;++i)
ret.a[i] = (long long)operator[](i + t) * u % mod;
ret = ret.log(m - t * k1);
for(register int i = 0;i < ret.size();++i)
ret.a[i] = (long long)ret[i] * k1 % mod;
ret = ret.exp(m - t * k1),t *= k1,ret.resize(m);
for(register int i = m - 1;i >= t;--i)
ret.a[i] = (long long)ret[i - t] * v % mod;
for(register int i = 0;i < t;++i)
ret.a[i] = 0;
return ret;
}
};
}
using Poly::init;
using Poly::poly;
inline int C(int n,int m)
{
return n < m ? 0 : (long long)Poly::fac[n] * Poly::ifac[m] % mod * Poly::ifac[n - m] % mod;
}
poly f[N + 5],g,ans;
inline poly solve(int l,int r)
{
if(l == r)
return f[l];
int mid = l + r >> 1;
return solve(l,mid) * solve(mid + 1,r);
}
int main()
{
init();
scanf("%d%d",&n,&m);
int d;
for(register int i = 1;i <= n;++i)
scanf("%d",&d),++c[d];
for(register int i = 1;i < n;++i)
{
f[i].resize(c[i - 1] + 1);
for(register int j = 1;j <= c[i - 1];++j)
f[i].a[j] = C(c[i - 1],j);
f[i] = f[i].pow(c[i] * c[i - 1] + 1,c[i]);
}
ans = solve(1,n - 1).modxn(m + 1);
for(register int i = 1;i < n;++i)
s = (s + (long long)c[i] * (c[i] - 1) / 2) % mod;
g.resize(min(m,s) + 1);
for(register int i = 0,p = 1;i <= min(m,s);++i,p = (long long)p * (s - i + 1) % mod)
g.a[i] = (long long)p * Poly::ifac[i] % mod;
ans = (ans * g).modxn(m + 1);
printf("%d\n",ans[m]);
}